init
This commit is contained in:
50
README.md
Normal file
50
README.md
Normal file
@@ -0,0 +1,50 @@
|
||||
|
||||
# Vector Database POC
|
||||
|
||||
## What it is
|
||||
|
||||
- Development environment using Devcontainers
|
||||
|
||||
- Stores document embeddings in ChromaDB
|
||||
|
||||
- Retrieves relevant documents for a given query
|
||||
|
||||
- Generates answers using Ollama
|
||||
|
||||
## Getting started
|
||||
|
||||
Download some models
|
||||
|
||||
```bash
|
||||
ollama pull mxbai-embed-large # Used for embeddings
|
||||
|
||||
ollama pull gemma3 # Used as LLM
|
||||
```
|
||||
|
||||
Download python depedencies
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Run
|
||||
|
||||
First you need to seed the database with a few documents
|
||||
|
||||
```bash
|
||||
python script.py seed
|
||||
```
|
||||
|
||||
And then you can do your search
|
||||
|
||||
```bash
|
||||
python script.py search --query "What is NAF and how can it help?"
|
||||
```
|
||||
|
||||
## Roadmap
|
||||
|
||||
- Streaming responses (for real-time chat)
|
||||
|
||||
- Metadata filtering (e.g., retrieving only recent docs)
|
||||
|
||||
- Improved ranking (reranking results for better accuracy)
|
||||
Reference in New Issue
Block a user